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Abstract Heat transfer characteristics of a non-Newtonian fluid on a power-law stretched
surface with suction or injection were investigated. Similarity solutions of the laminar boundary
layer equations describing heat transfer flow in a quiescent fluid were obtained and solved
numerically. Temperature profiles as well as the Nusselt number Nu, were obtained for two
thermal boundary conditions; namely, uniform surface temperature (b=0) and cooled surface
temperature (b=±1), for different governing parameters such as Prandtl number Pr, injection
parameter d and power-law index n. It was found that decreasing injection parameter d and
power-law index n and increasing Prandtl number Pr enhanced the heat transfer coefficient.

Nomenclature
b = temperature exponent parameter
C = dimensional constant [K.m±b]
d = dimensionless injection parameter

[vw/(Uox
p)]

f = dimensionless stream function
h = heat transfer coefficient [W/(m2.K)]
k = thermal conductivity [W/(m.K)]
n = fluid power-law index
Nu = Nusselt number [hx/k]
p = velocity exponent parameter
Pr = generalized Prandtl number

[v*(Uox
p)n±1x1±n/α]

Re = generalized Reynolds number
[(Uox

p)2±nxn/v*]
T = temperature [K]
Uo = dimensional constant [m1±p/s]
u = velocity component in the x-direction

[m/s]
v = velocity component in the y-direction

[m/s]
x = coordinate in direction of surface

motion [m]

y = coordinate in direction normal to
surface motion [m]

Greek symbols
� = thermal diffusivity �m2=s�
� = dimensionless similarity variable

[y/x]
� = dimensionless temperature

[�T ÿ T1�=�Tw ÿ T1��;
��T ÿ T1�=�Cxb��

� = dynamic viscosity[kg/(m.s)]
�* = generalized dynamic viscosity

[kg/m.s2±n)]
�* = generalized kinematic viscosity

[m2/s2±n]
� = density [kg/m3]

Subscripts
w = condition at the surface
x = derivative with respect to x
1 = condition at ambient medium
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Introduction
Thermal transport from a heated moving surface to a quiescent non-Newtonian
fluid is of interest in many practical industrially important processes such as
multiphase mixtures, polymer melts and solutions, food products, biological fluids,
natural products and agricultural and dairy wastes. The interest in studying flow
and heat transfer characteristics of non-Newtonian fluids has increased in the last
four decades because of their important usage and wide range of applications.
Considerable efforts have been directed at these characteristics to control the
quality of the final product of these processes because of the growing use of these
fluids in various manufacturing and processing industries such as hot rolling,
extrusion, wire drawing, continuous casting, glass fibre production, and paper
production (Chabra, 1993; Altan et al., 1979; Fisherr, 1976).

Many authors have attacked the problem from the point of view of a plate
moving with a linear velocity and for various temperature boundary
conditions. Grubka and Bobba (1985) studied the heat transfer characteristics
of a continuous stretching surface with variable temperature. Furthermore,
linearly stretching surface subject to suction or injection was studied. Chen and
Char (1988) studied the effects of power-law surface temperature and power-
law surface heat flux variation on the heat transfer characteristics of a
continuous, linearly stretching sheet subject to blowing or suction in a fluid
initially at rest and at uniform temperature. Vajravelu and Rollins (1991)
investigated the heat transfer characteristics in a visco-elastic fluid over a
continuous, impermeable, linearly stretching sheet with power-law surface
temperature or power-law surface heat flux. Ahmad and Mubeen (1995)
investigated the heat transfer characteristics for large and small Prandtl
numbers in a boundary layer flow of incompressible viscous fluid past a
stretching plate with suction.

Ali (1995) studied the similarity solutions of the laminar boundary layer
equations describing heat and flow in a quiescent Newtonian fluid driven by a
stretched surface subject to suction or injection; he investigated, for three
thermal boundary conditions, the effects of Prandtl number, temperature
exponent, velocity exponent and the injection parameter. Char and Chen (1988)
studied the temperature distribution in a visco-elastic fluid of Walter's liquid B
model over a horizontal stretching plate. The velocity of the plate is
proportional to the distance from the slit and the plate is subject to a power-law
variable heat flux. Gorla et al. (1995) studied the free convection boundary layer
equations of the Ostwald-de Waele non-Newtonian power-law type fluids near
a three-dimensional stagnation point of attachment on an isothermal surface
for variable, power-law index and Prandtl number. Acrivos et al. (1960)
explored the functional relationship between characteristic groups of non-
Newtonian fluids past an external surface for very large Prandtl numbers.
Gorla et al. (1998) presented the effect of viscosity index on the surface heat
transfer rate of a non-similar boundary layer analysis for the problem of mixed
convection in power-law type non-Newtonian fluids along horizontal surfaces
with variable wall temperature distribution.
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In the present work, the laminar boundary layer flow and heat transfer
characteristics of non-Newtonian fluids over a continuous stretched surface
employing the most general power-law for velocity and temperature
distributions with various injection parameters will be studied. Similar
solutions for the governing boundary layer equations will be obtained and the
derived ordinary differential equations are then solved numerically for
different parameters: the power-law index n; the temperature exponent b; the
injection parameter d; and the Prandtl number Pr.

Mathematical formulation
Consider a power-law stretched surface with suction or injection moving
through a quiescent non-Newtonian fluid, as shown in the schematic diagram
Figure 1. The x coordinate is measured along the moving surface from the point
where the surface originates and the y coordinate is measured normal to it. It
should be noted that positive and negative m indicates that the surface is
accelerated or decelerated from the extruded slit, respectively. Positive and
negative d implies injection and suction, respectively. The governing equations
for steady, laminar, two-dimensional, incompressible viscous flow of a non-
Newtonian fluid with constant physical properties can be written as:
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Figure 1.
Schematic diagram of

flow induced by a
power-law stretched

surface
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With the following boundary conditions:

@y � 0 u � Uox
m; v � vw�x�;T � T1 � Cxb

@y!1 u! 0 ; T ! T1

�
�4�

two thermal boundary conditions of uniform temperature (b = 0) and cooled
surface temperature (b = ±1) are considered.

Problem solution
The governing equations (1-3) are very complex because of their high non-linearity;
therefore a similarity transformation is introduced in order to facilitate the solution.
The transformed equations are solved numerically using a finite difference method.
The stream function is defined so that it satisfies the continuity equation:

u � @ 
@y

and v � ÿ @ 
@x

�5�

The similarity variable � and the stream function are defined as follows:

��x; y� � y=x;  � Uox
2�nÿ1�

nÿ2 f ��� �6�
The velocity components in x and y direction can be written as:

u � Uox
n

nÿ2f 0���; v � Uox
n

nÿ2�2�1ÿ n�
nÿ 2

f ��� � �f 0���� �7�

The temperature T is also generalized for the similarity solution, so that the
generalized temperature � is a function of � alone:

� � T ÿ T1
Tw ÿ T1

or � � T ÿ T1
Cxb

�8�

The system of the governing equations is transformed into the following ordinary
differential equations:

�q� r�f 02 ÿ rff 00 � f 00j jnÿ2
f 000� f 00j j � �nÿ 1�f 00� �9�

�00 � Pr�b�f 0 ÿ rf �0� �10�
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With their boundary conditions:

f 0�0� � 1; f �0� � d nÿ2
2 �1ÿn� ; f 0��1� � 0

� ��1� � 0; � �0� � 1

)
�11�

where q � ÿ1; r � p� 1 and p � n

nÿ 2

the heat transfer characteristics will be studied for two thermal boundary conditions:

(1) Uniform temperature (b = 0)

��0� � 1;C � Tw ÿ T1 �12�

(2) Cooled surface temperature

��0� � 1;C � Tw ÿ T1
xb

�13�
The local heat transfer coefficient can be expressed in dimensionless form of
Nusselt number for variable and uniform surface temperature:

Nu � ÿ�0�0� �14�
Owing to the assumption of constant physical properties, the hydrodynamics of
the flow are independent of both temperature and time. The energy equation is
uncoupled with the momentum equation. Therefore the momentum equation can
be solved and then, once we have the velocity field, the energy equation can be
solved to obtain the temperature field. The governing equations were solved
using 4th-5th Runge-Kutta method with uniform grid points. To study the effect
of grid refinements, results for Nusselt number Nu for different injection
parameter d at n = 0.2, b = 0 and Pr = 0.72 were obtained with doubling the node
points. The change in the Nu variation was found to be less than 1 per cent.

Results and discussion
Temperature distributions considering different parameters were obtained for
values of the power-law index, n, ranges from 0.2 to 1.4 and injection parameter
d from ±10 to 1.25 as well as different Prandtl numbers.

The dimensionless temperature distribution with cooled surface temperature, b
= ±1, at Pr = 10 and n = 0.2, as a function of the similarity variable for different
values of dimensionless parameter d, is presented in Figure 2. Heat is transferred
to the moving surface for the injection (d > 0) and from the surface for suction
(d < 0) processes. As might be expected, suction thins the thermal boundary layer
whereas injection thickens it.

Figure 3 shows the temperature profiles for uniform surface temperature
(b = 0). In this Figure, the thinning of the boundary layer with injection is
evident for increasing the surface temperature from a uniform to a linear
relation. Also, it can be seen that all heat was transferred from the surface to the
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medium. It should be noted that in this case the boundary layer assumptions do
not permit a solution of the boundary layer equation for large d, because � will
approach a constant value of 1 and the boundary layer is almost literally blown
off the surface similar to that of stationary plate with injection.

Figure 4 shows the dimensionless temperature distribution for power-law
index n = 0.4, suction parameter, d = ±0.4 and temperature exponent (b = ±1) for

Figure 2.
Temperature profiles for
cooled surface
temperature at different
values of dimensionless
injection parameter, d,
n = 0.2

Figure 3.
Temperature profiles for
uniform surface
temperature at different
values of dimensionless
injection parameter, d,
n = 0.2
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different Prandtl numbers. Increasing Prandtl number will increase adverse
heat transfer near the surface and decrease the temperature as �! �1 , as a
result of decreasing thermal boundary layer thickness. The temperature
distribution for uniform surface temperature as shown in Figure 5 is similar to
the case of cooled surface temperature. Increasing Prandtl number decreases
the temperature, the boundary layer thickness, and the heat is transferred from
the surface to the medium. Figures 6 and 7 represent the temperature

Figure 4.
Temperature profiles for

cooled surface
temperature at different

values of Prandtl
number, Pr, n = 0.4

Figure 5.
Temperature profiles for

uniform surface
temperature at different

values of Prandtl
number Pr, n = 0.4
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distribution at Pr = 0.72, d = ±0.2 for cooled and uniform surface temperature,

respectively, for different power-law index, n. Increasing power-law index will

increase the temperature as a result of increasing the thermal boundary layer.

The Nusselt number Nu, as a function of the blowing parameter d, is shown in

Figures 8 and 9 at n = 0.4 for cooled and uniform temperature distribution,

respectively. Negative values of Nu indicate that heat flows into the surface

Figure 6.
Temperature profiles for
cooled surface
temperature at different
values of flow index n

Figure 7.
Temperature profiles for
uniform surface
temperature at different
values of flow index n
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despite the surface temperature's continuous excess over the free-stream
temperature. This physical mechanism could be explained as a fluid particle
heated to near the surface temperature, being conveyed downstream to a place
at which the surface temperature is lower. Then heat flows into the surface and
results in negative heat transfer coefficients, which means only that �0�0� is no
longer proportional to the temperature difference. However, positive values of
Nu show that heat transferred from the surface to the medium results in

Figure 8.
Nusselt number versus
dimensionless injection

parameter for cooled
surface temperature at

different values of
Prandtl number, Pr

Figure 9.
Nusselt number versus
dimensionless injection
parameter for uniform
surface temperature at

different values of
Prandtl number, Pr
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positive heat transfer coefficient. In the case of cooled surface temperature,
increasing Prandtl number will increase adverse heat transfer for injection (d >
0) and increase heat transfer for suction (d < 0).

Figure 10 shows the local heat transfer coefficient Nu as a function of d for
uniform and cooled surface temperature. Increasing surface temperature b will
increase heat transfer coefficient, as a result of decreasing the thermal
boundary layer thickness. Figures 11 and 12 show the local Nusselt number Nu
as a function of the blowing parameter d, for different power-law index n, at
different values of Pr for the case of cooled and uniform surface temperature,
respectively. It can be seen that increasing the power-law index n will lead to a
reduction in Nusselt number Nu. This can be explained by the increase in the
thermal boundary layer thickness and, as a result, the increase in the thermal
resistance of this layer. Furthermore, it is clear that suction d < 0 enhances the
heat transfer coefficient much better than blowing d > 0, and the thickness of
the thermal boundary layer is reduced. Thus suction can be used for cooling the
surface much faster than blowing.

Conclusions
In this study, heat transfer analysis of non-Newtonian fluids on a power-law
stretched surface with suction or injection has been presented. Numerical
solution was obtained for temperature and heat transfer coefficients for two
thermal boundary conditions, uniform and cooled surface temperature. It was
found that increasing the injection parameter or the power-law index increases
the temperature, while increasing the Prandtl number or the surface
temperature exponent decreases the temperature. In addition, suction increases
the heat transfer, whereas injection decreases it for all studied parameters.

Figure 10.
Nusselt number versus
dimensionless injection
parameter for cooled
and uniform surface
temperatures
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In the case of cooled surface temperature heat flows to or from the surface
depending on d and Pr, and for all d > 0 negative heat transfer was found. It
was found that heat transfer coefficient increases with decreasing injection
parameter, and with the increase of velocity and temperature exponents at
constant Pr number. Increasing Prandtl number, keeping all other parameters
constant, enhances the heat transfer coefficient and increasing the power-law
index will decrease the Nusselt number Nu, for all studied parameters.

Figure 11.
Nusselt number versus
dimensionless injection

parameter for cooled
surface temperature at

different values of flow
index, n

Figure 12.
Nusselt number versus
dimensionless injection
parameter for uniform
surface temperature at

different values of flow
index, n
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